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QUERY EXPANSION AND
QUERY-DOCUMENT MATCHING USING
PATH-CONSTRAINED RANDOM WALKS

BACKGROUND

Term mismatch can be a challenge when performing a
search. For instance, a query and its relevant documents are
often composed using different vocabularies and language
styles, which can cause term mismatch. Conventional algo-
rithms utilized by search engines to match documents to
queries may be detrimentally impacted by term mismatch,
and thus, query expansion (QE) is oftentimes employed to
address such challenge. Query expansion can expand a query
issued by a user with additional relevant terms, called expan-
sion terms, so that more relevant documents can be retrieved.

Various conventional QE techniques have been imple-
mented for information retrieval (IR). Some traditional QE
techniques based on automatic relevance feedback (e.g.,
explicit feedback and pseudo-relevance feedback (PRF)) can
enhance performance of IR. Yet, such techniques may be
unable to be directly applied to a commercial web search
engine because relevant documents may be unavailable.
Moreover, generation of pseudo-relevant documents can
employ multi-phase retrieval, which may be expensive and
time-consuming to perform in real time.

QE techniques, developed recently, utilize search logs
(e.g., clickthrough data). These techniques, called log-based
QE, can also derive expansion terms for a query from a
(pseudo-)relevant document set. However, different from
techniques based on automatic relevance feedback, the rel-
evant set can be identified in log-based QE techniques from
user clicks recorded in search logs. For example, the set of
(pseudo-)relevant documents of an input query can be formed
by including the documents that have been previously clicked
for the query. Many conventional log-based QE techniques
use a global model that is pre-computed from search logs. The
model can capture the correlation between query terms and
document terms, and can be used to generate expansion terms
for the input query on the fly.

Despite the effectiveness of the log-based QE techniques,
such approaches can suffer from various problems. For
instance, data sparseness can impact effectiveness of log-
based QE techniques. A significant portion of queries may
have few or no clicks in the search logs, as stated by Zipf’s
law. Moreover, ambiguity of search intent can detrimentally
impact log-based QE techniques. For example, a term corre-
lation model may fail to distinguish the search intent of the
query term “book” in “school book™ from that in “hotel book-
ing”. Although the problem can be partially alleviated by
using correlation models based on phrases and concepts,
there may be scenarios where the search intent is unable to be
correctly identified without use of global context. For
instance, the query “why six bottles in one wrap” can be about
a package, and the intent of the query “Acme baked bread”
can concern looking for a bakery in California. In such cases,
a (pseudo-)relevant documents set of the input query, if avail-
able, can be more likely to preserve the original search intent
than the global correlation model.

SUMMARY

Described herein are various technologies that pertain to
use of path-constrained random walks for query expansion
and/or query document matching. Clickthrough data from
search logs can be represented as a computer-implemented
labeled and directed graph. Path-constrained random walks
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2

(PCRW) can be executed over the computer-implemented
labeled and directed graph for query expansion and/or docu-
ment-query matching. The path-constrained random walks
can be executed over the labeled and directed graph based
upon an input query. The labeled and directed graph can
include a first set of nodes that are representative of queries
included in the clickthrough data from the search logs. More-
over, the labeled and directed graph can include a second set
of'nodes that are representative of documents included in the
clickthrough data from the search logs. The labeled and
directed graph can further include a third set of nodes that are
representative of words from the queries and the documents.
The labeled and directed graph can also include edges
between nodes that are representative of relationships
between the queries, the documents, and the words. The path-
constrained random walks can include traversals over edges
of'the graph between nodes. Further, a score for a relationship
between a target node and a source node representative of the
input query can be computed based at least in part upon the
path-constrained random walks.

In accordance with various embodiments, query expansion
techniques based on path-constrained random walks can be
implemented. Accordingly, the target node of the path-con-
strained random walks can be representative of a candidate
query expansion term (e.g., the third set of nodes that are
representative of the words from the queries and the docu-
ments can include the target node). Thus, the score for the
relationship between the target node representative of the
candidate query expansion term and the source node repre-
sentative of the input query can be computed. Such score can
be computed as a learned combination of the path-con-
strained random walks on the labeled and directed graph
between the target node representative of the candidate query
expansion term and the source node representative of the
input query. The score for the relationship can be a probability
of picking the candidate query expansion term for the input
query.

In accordance with other embodiments, query-document
matching techniques based upon path-constrained random
walks over the labeled and directed graph can be imple-
mented. Thus, the target node of the path-constrained random
walks can be representative of a candidate document (e.g., the
second set of nodes that are representative of the documents
included in the clickthrough data from the search logs can
include the target node). Accordingly, the score for the rela-
tionship between the target node representative of the candi-
date document and the source node representative of the input
query can be computed. The score can be computed as a
learned combination of the path-constrained random walks
on the labeled and directed graph between the target node
representative of the candidate document and the source node
representative of the input query. Further, the score for the
relationship can be a probability of the candidate document
being relevant to the input query.

Pursuant to various embodiments, the score for the rela-
tionship between the target node and the source node repre-
sentative of the input query can be computed by determining
respective values for the path-constrained random walks
between the target node and the source node representative of
the input query. For instance, the path-constrained random
walks can traverse the edges of the graph between the nodes
from the source node representative of the input query to the
target node in accordance with differing path types. A path
type can include a sequence of relations between the nodes in
the graph for traversing as part of a corresponding path-
constrained random walk. Thus, the path type can be a
sequence of edge labels for edges included in the labeled and
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directed graph that can be followed during execution of the
corresponding path-constrained random walk. Moreover, the
respective values for the path-constrained random walks that
traverse the edges of the graph between the nodes from the
source node representative of the input query to the target
node in accordance with the differing path types can be com-
bined to compute the score for the relationship between the
target node and the source node representative of the input
query.

The above summary presents a simplified summary in
order to provide a basic understanding of some aspects of the
systems and/or methods discussed herein. This summary is
not an extensive overview of the systems and/or methods
discussed herein. It is not intended to identify key/critical
elements or to delineate the scope of such systems and/or
methods. Its sole purpose is to present some concepts in a
simplified form as a prelude to the more detailed description
that is presented later.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a functional block diagram of an exem-
plary system that executes path-constrained random walks.

FIG. 2 illustrates a functional block diagram of an exem-
plary system that executes path-constrained random walks as
part of a search.

FIG. 3 illustrates an exemplary labeled and directed graph.

FIG. 4 illustrates a functional block diagram of an exem-
plary system that constructs the labeled and directed graph
based upon clickthrough data from search logs.

FIGS. 5-8 illustrate various exemplary path-constrained
random walks between a source node that represents an input
query Q and a target node that represents a candidate query
expansion term w;.

FIG. 9 is a flow diagram that illustrates an exemplary
methodology for using path-constrained random walks.

FIG. 10 is a flow diagram that illustrates an exemplary
methodology for performing query expansion or query-docu-
ment matching using path-constrained random walks.

FIG. 11 illustrates an exemplary computing device.

DETAILED DESCRIPTION

Various technologies pertaining to use of path-constrained
random walks for query expansion and/or query-document
matching are now described with reference to the drawings,
wherein like reference numerals are used to refer to like
elements throughout. In the following description, for pur-
poses of explanation, numerous specific details are set forth in
order to provide a thorough understanding of one or more
aspects. It may be evident, however, that such aspect(s) may
be practiced without these specific details. In other instances,
well-known structures and devices are shown in block dia-
gram form in order to facilitate describing one or more
aspects. Further, it is to be understood that functionality that
is described as being carried out by certain system compo-
nents may be performed by multiple components. Similarly,
for instance, a component may be configured to perform
functionality that is described as being carried out by multiple
components.

Moreover, the term “or” is intended to mean an inclusive
“or” rather than an exclusive “or.” That is, unless specified
otherwise, or clear from the context, the phrase “X employs A
or B” is intended to mean any of the natural inclusive permu-
tations. That is, the phrase “X employs A or B” is satisfied by
any of the following instances: X employs A; X employs B; or
X employs both A and B. In addition, the articles “a” and “an”
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as used in this application and the appended claims should
generally be construed to mean “one or more” unless speci-
fied otherwise or clear from the context to be directed to a
singular form.

As set forth herein, query expansion and/or query-docu-
ment matching based on path-constrained random walks can
be implemented. Clickthrough data from search logs can be
represented as a labeled and directed graph. For query expan-
sion, a probability of picking a candidate query expansion
term for an input query is computed by a learned combination
of path-constrained random walks on the graph. Moreover,
for query document matching, a probability of a candidate
document being relevant to an input query can be computed
by a learned combination of path-constrained random walks
on the graph.

A principled framework that incorporates disparate models
in a unified manner is provided herein. For instance, for query
expansion, the framework can be generic by covering various
QE models as special cases and flexible by enabling a variety
ofinformation to be combined in a unified manner. Moreover,
the framework supports incorporating additional QE models
(e.g., enabling QE model(s) to be later added or removed).
Further, the path-constrained random walk-based techniques
provided herein can effectively expand rare queries (e.g.,
low-frequency queries that are unseen in search logs) and
provide enhanced performance as compared to conventional
QE techniques.

Referring now to the drawings, FIG. 1 illustrates a system
100 that executes path-constrained random walks. For
example, the system 100 can implement query expansion
based upon the path-constrained random walks. According to
another example, the system 100 can implement query-docu-
ment matching based upon the path-constrained random
walks.

The system 100 includes a data repository 102 that retains
a labeled and directed graph 104. Search logs, which can
include clicked query-document pairs, can be represented as
the labeled and directed graph 104, which includes three
types of nodes representing respectively queries, documents,
and words (e.g., candidate expansion terms). Thus, the
labeled and directed graph 104 includes a first set of nodes
that are representative of queries included in clickthrough
data from the search logs, a second set of nodes that are
representative of documents included in the clickthrough data
from the search logs, and a third set of nodes that are repre-
sentative of words from the queries and the documents. More-
over, the labeled and directed graph 104 includes edges
between nodes that are representative of relationships
between the queries, the documents, and the words. The
edges between the nodes included in the labeled and directed
graph 104 are labeled by respective relations. The edges in the
labeled and directed graph 104 can further be assigned
respective edge scores based upon relation-specific probabi-
listic models for the respective relations.

The system 100 further includes a random walk component
106 that can receive an input query 108. The random walk
component 106 can execute path-constrained random walks
over the labeled and directed graph 104 based upon the input
query 108. The path-constrained random walks executed by
the random walk component 106 can include traversals over
edges of the graph 104 between nodes. The path-constrained
random walks traverse the edges of the graph 104 between the
nodes in accordance with predefined path types 110. Each of
the predefined path types 110 can include a respective
sequence of relations between the nodes in the graph 104 for
traversing as part of a corresponding path-constrained ran-
dom walk executed by the random walk component 106.
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The path-constrained random walks executed by the ran-
dom walk component 106 over the labeled and directed graph
104 instantiate respective differing path types 110. The path-
constrained random walks executed by the random walk com-
ponent 106 can begin at a source node representative of the
input query 108. Moreover, the path-constrained random
walks can traverse edges of the graph 104 between nodes in
accordance with the differing predefined path types 110. For
instance, a given path-constrained random walk can traverse
edges of the graph 104 between nodes in accordance with a
corresponding one of the path types 110, a disparate path-
constrained random walk can traverse edges of the graph 104
between nodes in accordance with a disparate corresponding
one of the path types 110, and so forth. Further, the path-
constrained random walks can end at a target node.

The system 100 also includes a relation evaluation compo-
nent 112 that computes a score 114 for a relationship between
a target node and the source node representative of the input
query 108 based at least in part upon the path-constrained
random walks. For instance, the relation evaluation compo-
nent 112 can determine respective values for the path-con-
strained random walks between the target node and the source
node representative of the input query 108, where the path-
constrained random walks traverse the edges of the graph 104
between the nodes from the source node representative of the
input query 108 to the target node in accordance with the
differing path types 110. Moreover, the relation evaluation
component 112 can combine the respective values for the
path-constrained random walks to compute the score 114 for
the relationship between the target node and the source node
representative of the input query 108. According to various
embodiments, weights can be assigned to the differing path
types 110. Thus, the relation evaluation component 112 can
combine the respective values for the path-constrained ran-
dom walks that traverse the edges of the graph 104 between
the nodes from the source node representative of the input
query 108 to the target node in accordance with the differing
path types 110 as a function of the weights assigned to the
differing path types 110.

While much of the aforementioned discussion pertains to
computing the score 114 for the relationship between the
target node and the source node that represents the input
query 108, it is to be appreciated that scores for relationships
between substantially any number of target nodes and the
source node that represents the input query 108 can similarly
be computed based at least in part upon respective path-
constrained random walks. Moreover, such scores for the
relationships between the target nodes and the source node
can be ranked. For instance, a ranked list (e.g., of the target
nodes) can be output based upon the respective scores for the
corresponding relationships between the target nodes and the
source node that represents the input query 108.

Again, pursuant to various examples, the system 100 can
implement query expansion based upon the path-constrained
random walks over the labeled and directed graph 104
executed by the random walk component 106. Accordingly,
the third set of nodes of the labeled and directed graph 104
that are representative of the words from the queries and the
documents can include the target node. Thus, the target node
can be representative of a candidate query expansion term.
Further, the score 114 for the relationship can be a probability
of picking the candidate query expansion term for the input
query 108.

According to other examples, the system 100 can imple-
ment query-document matching based upon the path-con-
strained random walks over the labeled and directed graph
104 executed by the random walk component 106. Thus, the
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second set of nodes of the labeled and directed graph 104 that
are representative of the documents included in the click-
through data from the search logs can include the target node.
Hence, the target node can be representative of a candidate
document. Moreover, the score 114 for the relationship can be
a probability of the candidate document being relevant to the
input query 108.

Now turning to FIG. 2, illustrated is a system 200 that
executes path-constrained random walks as part of a search.
The system 200 includes the data repository 102, which
retains the labeled and directed graph 104, and a search com-
ponent 202. Further, the search component 202 can include
the random walk component 106 and the relation evaluation
component 112; yet, according to other examples (not
shown), it is contemplated that the random walk component
106 and/or the relation evaluation component 112 can be
separate from the search component 202.

The search component 202 can execute substantially any
type of search (e.g., web searches, desktop searches, etc.).
The search component 202, for example, can be a search
engine. Thus, by way of illustration, the search component
202 can be a web search engine, a desktop search engine, or
the like; however, it is to be appreciated that the claimed
subject matter is not limited to the foregoing illustrations.

The search component 202 can receive the input query 108
(e.g., the input query 108 can desirably be input to the search
component 202). Further, the random walk component 106
can execute the path-constrained random walks over the
labeled and directed graph 104 based upon the input query
108. The relation evaluation component 112 can compute a
score for a relationship between a target node and a source
node that represents the input query 108 based at least upon
the path-constrained random walks.

Moreover, the search component 202 can include a rank
component 204. It is contemplated that path-constrained ran-
dom walks can be executed over the labeled and directed
graph 104 based upon the input query 108 for a plurality of
target nodes. The relation evaluation component 112 can
compute respective scores for the relationships between such
target nodes and the source node that represents the input
query 108 based upon the respective path-constrained ran-
dom walks. Further, the rank component 204 can output a
ranked list based upon the respective scores for the corre-
sponding relationships between target nodes and the source
node that represents the input query 108. Moreover, the
search component 202 can perform a search based upon the
ranked list.

In accordance with an example, query expansion can be
implemented based upon the path-constrained random walks
over the labeled and directed graph 104 executed by the
random walk component 106. Following this example, the
rank component 204 can output a ranked list of candidate
query expansion terms based upon respective scores for cor-
responding relationships between target nodes representative
of the candidate query expansion terms and the source node
representative of the input query 108.

By way of another example, query-document matching can
be implemented based upon the path-constrained random
walks over the labeled and directed graph 104 executed by the
random walk component 106. Accordingly, the rank compo-
nent 204 can output a ranked list of candidate documents
based upon respective scores for corresponding relationships
between target nodes representative of the candidate docu-
ments and the source node representative of the input query
108.

Reference is again made to the exemplary scenario where
query expansion is implemented. Thus, the target node can
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represent a candidate query expansion term. The search com-
ponent 202 can select the candidate query expansion term
based at least in part upon the score for the relationship
between the target node representative of the candidate query
expansion term and the source node representative of the
input query 108 (e.g., based upon a position of the candidate
query expansion term in the ranked list output by the rank
component 204). According to an example, responsive to
selecting the candidate query expansion term, the search
component 202 can execute a search over a plurality of docu-
ments based at least in part upon the candidate query expan-
sion term. Pursuant to another example, responsive to select-
ing the candidate query expansion term, the search
component 202 can cause the candidate query expansion term
to be displayed as a suggested query (e.g., to a user on a
display screen of a user device). Following this example, if
the suggested query corresponding to the candidate query
expansion term is chosen (e.g., based upon user input), the
search component 202 can execute a search over a plurality of
documents based at least in part upon the candidate query
expansion term. By way of illustration, the search component
202 can cause a top K candidate query expansion terms in the
ranked list output by the rank component 204 to be displayed
as suggested queries, where K can be substantially any inte-
ger. Following this illustration, one or more of the suggested
queries can be chosen (e.g., based upon user input); accord-
ingly, the search component 202 can execute a search based at
least in part upon the one or more suggested queries that are
chosen.

Moreover, reference is again made to the exemplary sce-
nario where query-document matching is implemented.
Accordingly, the target node can represent a candidate docu-
ment. The search component 202 can return the candidate
document responsive to execution of a search over a plurality
of documents. The candidate document, for instance, can be
returned by the search component 202 based at least in part
upon the score for the relationship between the target node
representative of the candidate document and the source node
representative of the input query 108.

It is noted that many of the following examples set forth
herein pertain to use of the path-constrained random walks
over the labeled and directed graph 104 for query expansion.
It is to be appreciated, however, that such examples can be
extended to scenarios where the path-constrained random
walks over the labeled and directed graph 104 are employed
for query document matching.

With reference to FIG. 3, illustrated is an exemplary
labeled and directed graph 300 (e.g., the labeled and directed
graph 104). The graph 300 includes a node 302 that represents
an input query Q (e.g., a source node), nodes 304 that repre-
sent queries Q' included in the clickthrough data from the
search logs, nodes 306 that represent documents D included
in the clickthrough data from the search logs, and nodes 308
that represent words w (collectively referred to herein as
nodes 302-308). Moreover, the graph 300 includes edges
between the nodes 302-308.

For each path in the graph 300 that links the input query Q
to a candidate expansion term w (e.g., one of the nodes 308,
atarget node, etc.), there is a path type = (e.g., one of the path
types 110), defined by a sequence of edge labels. Each path
type can be viewed as a particular process of generating w
from Q. Further, a generation probability P(wlQ,m) is com-
puted by random walks along the paths that instantiate the
path type m, referred to as path-constrained random walks.

Various log-based QE models can be formulated in the
framework of path-constrained random walks by defining
particular path types. The path-constrained random walks
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provide a generic and flexible modeling framework. For
instance, the path-constrained random walks can cover vari-
ous log-based QE models as special cases, while allowing for
incorporation of other QF models (e.g., later developed QE
models). For example, a rich set of walk behaviors that sup-
port avariety of labeled edges can be defined, where different
information can be used at different stages of the walk.

Moreover, because different QE approaches often rely on
different sources and are potentially complimentary, it may
be desirable to combine them to address data sparseness and
help disambiguate search intent. For example, while auto-
matic feedback techniques using (pseudo-)relevant docu-
ments may retain search intent but suffer from data sparseness
especially for rare queries, techniques based on global term
correlation models may be applicable to both common and
rare queries but, due to the limited context information it
captures, may lead to an unexpected shift of search intent. The
path-constrained random walks provide a flexible mathemati-
cal framework in which different QE features, specified by
path types m, can be incorporated in a unified way. Formally,
in the path-constrained random walk-based QE approach set
forth herein, a probability of picking w for a given Q, P(wlQ),
can be computed (e.g., by the relation evaluation component
112) by a learned combination of path-constrained random
walks on the graph 300 (e.g., P(WIQ)=2 A PWIQ,m),
where A’s are the combination weights learned on training
data). Accordingly, the use of path-constrained random walks
can enhance robustness of QE to data sparseness while help-
ing disambiguate search intents.

Consider the directed, edge-labeled graph G=(C,T) (e.g.,
the graph 300), where T = CxRxC is the set of labeled edges
(also known as triples) (c,r,c'). Each triple represents an
instance r(c,c') of the relation reR. For QE, a separate proba-
bilistic model 0, can be used for each relation r. A probabi-
listic model is used to assign a score to each edge. The score
is the probability of reaching ¢' from ¢ with a one-step random
walk with edge type r, P(c'lc,0,).

A path type in G is a sequence m=<r,, . . ., I,,>. An instance
of the path type is a sequence of nodes c, . . ., c,,, such that
r,(c,_,,¢;). Each path type specifies a real-value feature. For a
given node pair (s,t), where s is a source node and t is a target
node, the value of the feature itis P(tls,m) (e.g., the probability
of reaching t from s by a random walk that instantiates the
path type, also known as a path-constrained random walk).
Specifically, suppose that the random walk has just reached c,
by traversing edges labeledr,, .. ., r, with Q=c,. Thenc,_, is
drawn at random, according to 8, , from nodes reachable by

edges labeled r,, | . A path type it 1s active for the pair (s,t) if
P(tls,m)>0.
LetB={1l,x,,...,m,} be the set of path types of length no

greater than 1 that occur in the graph 300 together with the
dummy type 1, which represents the bias feature. For
instance, P(tls,1)=1 may be set for nodes s,t. The score for
whether the target node t is related to the source node s can be
given by:

Pls)= ) AP(ls,m) W

neB

In the foregoing, where A, is the weight of feature w. The
model parameters to be learned are the vector A=<A_>_ .
Moreover, the construction of B and the estimation of A can be
application specific. For QE, the source node is the input
query to be expanded Q (e.g., the node 302) and target node is
a candidate expansion term w (e.g., one of the nodes 308).
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Thus, Equation (1) gives the probability of whether w is an
appropriate expansion term of Q.

With reference to FIG. 4, illustrated is a system 400 that
constructs the labeled and directed graph 104 based upon
clickthrough data 402 from search logs. The clickthrough
data 402 can be retained in a data repository 404. It is con-
templated that the data repository 404 can be the data reposi-
tory 102 of FIG. 1; yet, the claimed subject matter is not so
limited. The clickthrough data 402 can include query docu-
ment pairs.

Moreover, the system 400 includes a builder component
406 that constructs the labeled and directed graph 104 from
the clickthrough data 402. The builder component 406 can
further include a graph generation component 408 and an
edge label component 410. The graph generation component
408 can generate nodes for documents, queries, and words.
Further, the graph generation component 408 can create
edges linking the nodes.

The edge label component 410 can assign labels to the
edges. More particularly, the edge label component 410 can
label each edge in the graph by a respective relation. Further,
the edge label component 410 can assign each edge in the
labeled and directed graph 104 a respective edge score. The
edge score for a given edge can be generated by the edge label
component 410 based upon a relation-specific probabilistic
model for the relation of the edge.

The clickthrough data 402 includes a list of query-docu-
ment pairs. Each pair includes a query and a document which
has one or more user clicks for the query. Thus, the graph
generation component 408 can represent the search logs as a
graph G=(C,T) (e.g., the labeled and directed graph 104, the
graph 300 of FIG. 3). Again, the graph generation component
408 defines three types of nodes to represent respectively
queries, documents, and words that occur in queries and
documents. A query in the search logs, denoted by Q', has
clicked document(s). An input query to be expanded, denoted
by Q, can be a new, low-frequency query without clicked
documents. Such a query can be referred to as a rare query.
However, it is also contemplated that the input query to be
expanded Q' can alternatively be a query in the search logs
that has clicked document(s). Q and Q' are treated as different
nodes in G (as shown in FIG. 3).

The edge label component 410 labels each edge in the
graph 104 by a relation r. Further, the edge label component
410 scores each edge in the graph 104 using a relation-spe-
cific model 8,. The edge score is the probability of reaching a
target node t from a source node s with a one-step random
walk with edge type r, P(tls,0,). Examples of relations r and
their corresponding scoring functions score (s—t;r) are
shown below in Table 1.

TABLE 1

D Relation r Scoring function

1 similar. Q2Q' Cosine similarity between the term vectors of Q
and Q', where term weights are assigned using the

BM25 function.

2 translate. Q2Q' (g Q)
log ﬂ/zpm(q o=
q’eQ’ geQ
3 click. Q2D lick(Q, D
Q log PDIQ) = log— oK@ D)

2, click(Q, Dy
D;eD
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TABLE 1-continued

D Relation r Scoring function

4 click. D2Q click(Q, D)

logP(QID) = log————
>, click(Q;, D)
Q;eQ

5  generate. Q2w | g((l )tf(w; Q) cf(w))
o - +a
1Ql IC]
6  translate. Q2w tf(q; Q)
log) " Pon(Wld)
1Ql
qeQ
7 generate. Q2w 1 g((l o Q) cf(w)]
o - +a
Q1 IC]
8  translate. Q2w g Q)
lo P,.(w|q) -
82, PuWl) =
q'eQ
9 click. Q2D click(Q’, D)
logP(D|Q’) = log———M8M———
Y, click(Q’, D;)
D;eD
10 generate. D2w tf(w; D) cf(w)
log{(1 —
=P A )
11  translate. D2w tf(w;; D)
logénp,m(w|wi> ]
12 click. D2Q' Lick(Q’. D
logP(Q'|D) = k,gw
> click(Qf, D)
oleo
13 generate. w2D Py, (wDP(D)
logP(D|w) = loglmi,
2 Pu(wIDPD;)
D;eD
here Py, (w|D) = (1 ﬁ)tf(w; D) +ﬁcf(w)
where Py, (w|D) = (1 -
’ IDI IC
> clickQ, D)
0eQ
and P(D) = N
14 generate. w2Q)' P PO
JogP(Q'|w) = log o (WIQPQ")

Y Prn(wlQIPQ)
oleo

where Py, (w|Q) = (1 —a) tf(Tng) wcf(cvlv)
Z click(Q, D)
and P(Q) _ DeD <

As noted above, Table 1 sets forth examples of relations r
and their corresponding scoring functions. As provide above,
tf(q;Q) is the number of times term q occurs in query Q, and
IQI is the length of query Q. tf(w;D) is the number of times
term w occurs in D, and IDI is the length of document D. The
cf(w) and ICI values are analogously defined on the collec-
tion level, where the collection includes the set of documents
in search logs. P,,() is a word translation probability
assigned by a translation model trained on query-title pairs
derived from the clickthrough data 402. P,,,(q'lq) in #2 is also
assigned by the same query-title translation model based on
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the assumption that an appropriate expansion term q' is likely
to occur in the titles of the clicked documents. click (Q',D) is
the number of times document D is clicked for Q' in search
logs. In #11 and #12, D is the full set of documents in the
search logs, Q is the full set of queries in the search logs, and
N is the total number of clicks in the search logs (e.g.,
N=Z 5 o2 pep click(Q,D)). Further, a and are model hyperpa-
rameters that control smoothing for query and document lan-
guage models, respectively.

When scoring each edge in the graph 104 using the rela-
tion-specific model 6,, the edge label component 410 can
compute the edge score as a probability, P(tls,0,), via softmax
as follows:

__exp(score(s - 1, 1)) 2)
Pals. 6= > exp(score(s - ; 1))

It is noted that conventional path-constrained random walk
models commonly lack 0,, and the edge score is thus tradi-
tionally computed as:

1(r(s, 1))

Pels 0= S0t o)
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In the foregoing, I(r(s,t)) is an indicator function that takes
value 1 if there exists an edge with type r that connects s to t.
In contrast, introducing 6,. as set forth herein allows for incor-
poration of various models that have been developed for QE
and document ranking models.

The exemplary scoring functions in Table 1 are generally in
four categories. The first category includes functions for the
similar.* relation (e.g., #1), and is based on the BM25 model.
The second category, which includes functions for the rela-
tions of generate.* (e.g., #4), uses unigram language models
with Bayesian smoothing using Dirichlet priors. The third
category, including functions for click.* (e.g., #3), uses a
click model. The fourth category, including functions for
translation.* (e.g., #5), uses translation models, where, if
clickthrough data 402 is available for model training, the
word translation probabilities P,,, are estimated on query-
document pairs by assuming that a query is parallel to the
documents clicked on for that query.

Again, reference is made to FIG. 3. Given the graph 300,
any path type m that starts with the input query node Q (e.g.,
the node 302) and ends with a word node w (e.g., one of the
nodes 308) defines a real-value feature, which can be viewed
as a QFE model (or QE feature). The feature value is the
probability of picking w as an expansion term P(wIQ,m) by
path-constrained random walks of type it. Table 2 provides
examples of path types, which can be used as features in the
path-constrained random walk model.

TABLE 2

D path type m (Comments)

TM1 <translate. Q2w> (w is generated using clickthrough-based translation model
from Q)

TM2 <generate. Q2w, generate. w2D, generate. D2w> (variant of TM1
where translation model is trained via 2-step random walks on word-
document graph)

TM3 <generate. Q2w, generate. w2D, generate. D2w, generate. w2D,
generate. D2w> (variant of TM2 where 4-step random walks are used)

TM4 <generate. Q2w, generate. w2Q', generate. Q2w> (variant of TM2 where
random walks are performed on word-query graph)

TMS5 <generate. Q2w, generate. w2Q)', generate. Q'2w, generate. w2Q',
generate. Q2w> (variant of TM4 where 4-step random walks are used)

SQ1  <similar. Q2Q', generate. Q2w> (w is generated from similar queries Q' of Q,
where query similarity is based on BM25)

SQ2  <translate. Q2Q', generate. Q"2w> (variant of SQ1 where query
similarity is based on clickthrough-based translation model)

SQ3  <similar. Q2Q', click. Q'2D, click. D2Q', generate. Q'2w> (variant of
SQ1 where similar query set is enriched by 2-step random walks on query-
document graph)

SQ4  <similar. Q2Q', click. Q'2D, click. D2Q)/, click. Q"2D, click. D2Q',
generate. Q2w> (variant of SQ3 where 4-step random walks are used)

SQ5  <translate. Q2Q', click. Q'2D, click. D2Q', generate. Q'2w> (variant of
SQ2 where similar query set is enriched by 2-step random walks on query-
document graph)

SQ6  <translate. Q2Q', click. Q'2D, click. D2Q)/, click. Q"2D, click. D2Q',
generate. Q2w> (variant of SQ5 where 4-step random walks are used)

RD1 <similar. Q2Q', click. Q2D, generate. D2w> (w is generated from
pseudo-relevant documents D clicked for similar queries Q' of Q)

RD2 <translate. Q2Q, click. Q2D, generate. D2w> (variant of RD1 where
query similarity is computed via translation model)

RD3 <similar. Q2Q', click. Q"2D, translate. D2w> (variant of RD1 where w is
generated from D using translation model)

RD4  <similar. Q2Q', click. Q"2D, click. D2Q)’, click. Q2D, generate. D2w>
(variant of RD1 where set of D is enriched by 2-step random walks on
query-document graph)

RD5 <similar. Q2Q', click. Q2D, click. D2Q, click. Q2D, click. D2Q",
click. Q'2D, generate. D2w> (variant of RD3 where 4-step random walks
are used)

RD6 <translate. Q2Q, click. Q2D, click. D2Q)', click. Q'2D, generate. D2w>
(variant of RD2 where set of D is enriched by 2-step random walks on
query-document graph)
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TABLE 2-continued

14

D path type m (Comments)

RD7 <translate. Q2Q), click. Q'2D, click. D2Q’, click. Q'2D, click. D2Q",
click. Q'2D, generate. D2w> (variant of RD6 where 4-step random walks
are used)

RD8 <click. Q2D, generate. D2w> (w is generated from pseudo-relevant documents D
clicked for query Q)

RD9 <click. Q2D, click. D2Q, click. Q2D, generate. D2w> (variant of RD8
where the set of D is enriched by 2-step random walks on query-document
graph)

RD10 <click. Q2D, click. D2Q, click. Q2D, click. D2Q), click. Q2D,

generate. D2w> (variant of RD9 where 4-step random walks are used)

Table 2 provides three categories of QE features: (1) TM
features, which perform QE using translation models (e.g.,
the corresponding path types are specified by IDs from TM1
to TMS5 in Table 2), (2) SQ features, which perform QFE using
similar queries (e.g., SQ1to SQ6), and (3) RD features, which
perform QE using (pseudo-)relevant documents (e.g., RD1 to
RD10).

Many log-based QE techniques can use clickthrough-
based translation models where term correlations are pre-
computed using query-document pairs extracted from click-
through data. In contrast to approaches based on thesauri
either compiled manually or derived from document collec-
tions, the log-based techniques that use the translation models
can explicitly capture correlation between query terms and
document terms. An example of a log-based QE technique
that uses a translation model is encoded by the path type TM1,
<translate.Q2w>. In case there is not (enough) clickthrough
data for model training, a technique using Markov chains can
be employed, where the translation probability between two
words is computed by random walks on a document-word
graph; such technique can be encoded by the path types of
TM2 and TM3 in Table 2.

Rare queries oftentimes present a challenge for web search.
The expansion of a rare query Q is often performed by adding
terms from common queries Q' which are similar to Q. The
path-constrained random walk model achieves this by a ran-
dom walk that instantiates the path type SQ1, (similar.Q2Q)',
generate.Q'2w). For instance, similar queries can be retrieved
by performing random walks on a query-document click
graph. Thus, rare query expansion can be enhanced using a
larger set of similar queries identified by repeatedly applying
random walks following the edges with types click.Q2D and
click.D2Q. SQ3 and SQ4 in Table 2 are two examples of such
models.

A set of relevant documents D of an input query Q that is
seen in the search logs can be formed by collecting the docu-
ments that have clicks for that query. Thus, the relevance
feedback QE method can be represented as e.g., RDS,

<click.Q2D,generate. D2w>

If'the input query is a rare query, the set of pseudo-relevant
documents can be formed through similar queries Q' (e.g.,
queries that are similar to the input query) that are in the
search logs, e.g., RD1,

<similar.Q2Q',click.Q"2D,generate. D2w>
To address the data sparseness problem, more pseudo-rel-
evant documents can be retrieved by performing random
walks on a query-document click graph, such as RD4 and
RDS5 in Table 2.

FIGS. 5-8 illustrate various exemplary path-constrained
random walks between a source node 502 that represents an
input query Q (e.g., the node 302 of FIG. 3) and a target node
504 that represents a candidate query expansionterm w, (e.g.,
one of the nodes 308 of FIG. 3). FIGS. 5-8 depict respective
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portions of the labeled and directed graph 300 of FIG. 3. The
examples set forth in FIGS. 5-8 show four differing path
types. Yet, it is to be appreciated that the claimed subject
matter is not limited to the illustrated examples.

FIG. 5 depicts a path-constrained random walk 500 that
traverses edges of the labeled and directed graph from the
source node 502 to the target node 504 in accordance with the
path type TM1 from the Table 2. The path-constrained ran-
dom walk 500 is a one-step random walk. More particularly,
the path-constrained random walk 500 follows an edge 506
labeled by the relation translate.Q2w from the source node
502 to the target node 504.

FIG. 6 depicts a path-constrained random walk 600 that
traverses edges of the labeled and directed graph from the
source node 502 to the target node 504 in accordance with the
pathtype SQ1 from the Table 2. The path-constrained random
walk 600 is a two-step random walk. In particular, the path-
constrained random walk 600 begins at the source node 502,
follows an edge 602 labeled by the relation similar.Q2Q' from
the source node 502 to a node 604 that represents a similar
query QA (e.g., one of the nodes 304 of FIG. 3), and then
follows an edge 606 labeled by the relation generate.Q'2w
from the node 604 that represents the similar query QA to the
target node 504.

FIG. 7 depicts a path-constrained random walk 700 that
traverses edges of the labeled and directed graph from the
source node 502 to the target node 504 in accordance with the
path type RD1 from the Table 2. The path-constrained ran-
dom walk 700 is a three-step random walk. In particular, the
path-constrained random walk 700 begins at the source node
502, follows an edge 702 labeled by the relation similar.Q2Q'
from the source node 502 to a node 704 that represents a
similar query Q' (e.g., one of the nodes 304 of FIG. 3), then
follows an edge 706 labeled by the relation click.Q'2D from
the node 704 that represents the similar query Q' to a node
708 that represents a document Dy, (e.g., one of the nodes 306
of FIG. 3), and then follows an edge 710 labeled by the
relation generate. D2w from the node 708 that represents the
document Dy to the target node 504.

FIG. 8 depicts a path-constrained random walk 800 that
traverses edges of the labeled and directed graph from the
source node 502 to the target node 504 in accordance with the
path type TM4 from the Table 2. The path-constrained ran-
dom walk 800 is a three-step random walk. More particular,
the path-constrained random walk 800 begins at the source
node 502, follows an edge 802 labeled by the relation
generate.Q2w from the source node 502 to a node 804 that
represents a word w. (e.g., one of the nodes 308 of FIG. 3,
representing a word other than the candidate query expansion
term w,), then follows an edge 806 labeled by the relation
generate. w2Q' from the node 804 that represents the word w
to a node 808 that represents a similar query Q' (e.g., one of
the nodes 304 of FIG. 3), and then follows an edge 810 labeled
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by the relation generate.Q'2w from the node 808 that repre-
sents the similar query Q' to the target node 504.

Again, reference is made to FIG. 1. The random walk
component 106 can implement the random walks as matrix
multiplication. As an example, the task of retrieving similar
queries can be executed by the random walk component 106
repeatedly applying random walks following click.Q2D and
click.D2Q. Let N be the number of query nodes in G (e.g., the
labeled and directed graph 104) and M be the number of
document nodes. Let A be the NxM matrix with entries
A, »=P(DIQ), called query-document transition matrix,
where the probability is calculated from clicks as in #3 in
Table 1. Also, let B be the MxN matrix with entries B, ,=P
(QID), where the probability is calculated from clicks as in #4
in Table 1. A and B are called transition matrices. Thus, using
C=AB, the probability of walking from an initial query Q, to
any other query Q in 2k steps can be computed. Moreover, the
corresponding probability, which is used to measure query-
to-query similarity, is given by P(QIQO):CQOQ" . Because the
matrices A and B are sparse, the matrix product C=AB can be
computed efficiently. As k increases, C* becomes dense and
the powers cannot be computed efficiently. However, as k
increases, the search intent shifts from the initial query, as the
probability spreads out over all queries. Thus, k can be set to
1 or 2, for example.

For QE, the path-constrained random walk model of Equa-
tion (1) evaluated by the relation evaluation component 112
can be rewritten as follows:

Pow| Q)= LP(w| Q,m) *

neB

The foregoing is a weighted linear combination of path fea-
tures 7 in B. Thus, the path-constrained random walk model
performs QE by ranking a set of combined paths, each for one
pair of Q and w (e.g., a candidate expansion term).

The following generally describes construction of B in
Equation 3. Given the labeled and directed graph 300, the
total number of path types IBI can grow exponentially with an
increase of path length. Accordingly, a maximum path length
can be set to substantially any integer (e.g., the maximum
length can be set to 7 or substantially any other integer).
Moreover, a predefined set of relations that are selective, such
as shown in Table 1, can be utilized. Given a path type it, due
to the number of nodes in G, even with a length limit, the total
number of paths that instantiate @ can be significant. For
example, since a word can translate to any other word based
on a smoothed translation model, any node pair (Q', Q) can
have a non-zero-score relation translate.Q2Q' (#2 in Table 1),
thus making the transition matrix dense. For efficiency, mul-
tiplication of transition matrices can be kept sparse by retain-
ing a subset of (partial) paths (e.g., top-1000 (partial) paths)
after each step of a random walk.

Further, parameters A (e.g., weights assigned to the dif-
fering path types 110) can be estimated by generating training
data and performing parameter estimation using the training
data. Training data used for the estimation of parameters A, in
Bquation (3) is denoted as D={(x,,y,)}, where x, is a vector of
the path features for the pair (Q,,w,). That is, the j-th compo-
nent of'x, is P(w,1Q,,,), and y, is a Boolean variable indicating
whether w, is an appropriate expansion term for Q.

Assume a relevance judgment set is developed, for
example. The set can include a set of queries. Each query is
associated with a set of documents. Each query-document
pair has a relevant label. The effectiveness of a document
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ranking model Score(D,Q) can be evaluated on the set.
Whether a word w is an appropriate expansion for a query Q
can be determined by examining whether expanding Q with w
leads to an enhanced document ranking result. For instance,
the following ranking model can be utilized:

Score(D, Q) = alogP(w| 6p) + > P(g| 6p)logP(q| bp) @)

qeQ

As set forth in Equation 4, w is the expansion term under
consideration, a is its weight, q is a term in the original query
Q, and 6, and 8, are query and document models, respec-
tively. The query model P(ql8,,) is estimated via MLE (maxi-
mum likelihood estimation) without smoothing as:

tf(g; Q)
le]

5
Plglbp) = ®

In the foregoing, tf(q;Q) is the number of times q occurs in Q,
and QI is the query length. The document model, e.g.,
P(ql0,,), can be estimated via MLE with Dirichlet smoothing
as:

tf (w; D) + uP(w| C)
[D] +

6
Plq 1 6p) = ©

Accordingly, tf(w;D) is the number of times w occurs in D,
IDI is the document length, 1 is the Dirichlet prior (e.g., set to
2000), and P(wIC) is the probability of w on the collection C,
which can be estimated via MLE without smoothing.

Equation (4) can be viewed as a simplified form of QE with
a single term. It is used to label whether w is an appropriate
expansion term for Q. To simplify the training data generation
process, it can be assumed that w acts on the query indepen-
dently from other expansion terms, and each expansion term
is added into Q with equal weight, e.g., ¢=0.01 or a=-0.01.

The training data can be generated as follows. For each
query Q in the relevance judgment set, a set of candidate
expansion terms {w,} can be formed by collecting terms that
occur in the documents that are paired with Q but do not occur
in Q. Then w, can be labeled as an appropriate expansion term
for Q if it enhances the effectiveness of ranking document
when ¢=0.01 and detrimentally impacts the effectiveness
when a=-0.01. w, can be negatively labeled if it produces an
opposite effect or produces similar effect when 0=0.01 or
a=-0.01.

Moreover, the parameters ., can be estimated from the
training data as follows. Given training data D, the model
parameters A=<A_>__» can be optimized by maximizing the
following objective:

F= 3 [0 -alll el @

(x.y)eD

Inthe above, o, and o, respectively control the strength of the
L, -regularization (which helps with structure selection) and
L,-regularization (which helps mitigate overfitting). f(x,y;A)
is the log-likelihood of the training sample (x,y), and is
defined as:
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S 3 0) = ylogP(x, A) + (1 - ylog(l - P(x, 1)) ®)
Moreover,
P ) = Ply < 1 Vo exp(/ITx) )
(x,\)=P(y=1]x, )—m

is the model-predicted probability. The maximization, for
example, can be performed using the OWL-QN (Orthant-
Wise Limited memory Quasi-Newton) algorithm, which is a
version of L-BFGS (limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm) designed to address non-difter-
entiable L, norm.

The path-constrained random walk-based model of Equa-
tion (3) can assign each path type a weight. Such a param-
eterization is called one-weight-per-path-type. An alternative
way of parameterizing the model is one-weight-per-edge-
label. For instance, the objective function and optimization
procedure noted above can similarly be used for parameter
estimation of a one-weight-per-edge-label model. Because
the model can be seen as the combination of the path-con-
strained random walks with each path having its weight set to
the product of the edge weights along the path, the gradient of
edge weights can be calculated by first calculating the gradi-
ent with respect to the paths, and then applying the chain rule
of derivative.

In general, the techniques provided herein use search logs
for QE for web search ranking. A QE technique based on
path-constrained random walks is described, where the
search logs are represented as a labeled, directed graph, and
the probability of selecting an expansion term for an input
query is computed by a learned combination of constrained
random walks on the graph. Such path-constrained random
walk-based approach for QE is generic and flexible, where
various QE models can be incorporated as features, while also
allowing for incorporation of additional (e.g., later devel-
oped) features, by defining path types with a rich set of walk
behaviors. The path-constrained random walk model also
provides a principled mathematical framework in which dif-
ferent QE models (e.g., defined as path types or features) can
be incorporated in a unified way, thus mitigating susceptible
to sparseness of clickthrough data and ambiguous search
intent of user queries.

Moreover, as noted herein, while many of the aforemen-
tioned examples pertain to utilization of the path-constrained
random walks for query expansion, itis contemplated that the
path-constrained random walk-based technique set forth
herein can alternatively be utilized for query-document
matching (e.g., used for web document ranking directly). For
example, a relevance score of a query Q and a document D can
be modeled as a probability, computed by a learned combi-
nation of path-constrained random walks from Q to D, where
different document ranking models can be incorporated as
path types. Following this example, in addition to click-
through data, other data sources can be incorporated to con-
struct G, such as link graphs and the category structure of web
documents.

FIGS. 9-10 illustrate exemplary methodologies relating to
use of path-constrained random walks. While the methodolo-
gies are shown and described as being a series of acts that are
performed in a sequence, it is to be understood and appreci-
ated that the methodologies are not limited by the order of the
sequence. For example, some acts can occur in a different
order than what is described herein. In addition, an act can
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occur concurrently with another act. Further, in some
instances, not all acts may be required to implement a meth-
odology described herein.

Moreover, the acts described herein may be computer-
executable instructions that can be implemented by one or
more processors and/or stored on a computer-readable
medium or media. The computer-executable instructions can
include a routine, a sub-routine, programs, a thread of execu-
tion, and/or the like. Still further, results of acts of the meth-
odologies can be stored in a computer-readable medium,
displayed on a display device, and/or the like.

FIG. 9 illustrates a methodology 900 for using path-con-
strained random walks. At 902, an input query can be
received. At 904, path-constrained random walks can be
executed over a computer-implemented labeled and directed
graph based upon the input query. At 906, a score for a
relationship between a target node and a source node repre-
sentative of the input query can be computed based at least in
part upon the path-constrained random walks.

Now turning to FIG. 10, illustrated is a methodology 1000
for performing query expansion or query-document matching
using path-constrained random walks. At 1002, path-con-
strained random walks can be executed over a computer-
implemented labeled and directed graph based upon an input
query. At 1004, respective values for the path-constrained
random walks that traverse edges of the graph between nodes
in accordance with differing predefined path types can be
determined. At 1006, the respective values for the path-con-
strained random walks that traverse the edges of the graph
between the nodes in accordance with the differing pre-
defined path types can be combined to compute a score for a
relationship between a target node and a source node repre-
sentative of the input query.

Referring now to FIG. 11, a high-level illustration of an
exemplary computing device 1100 that can be used in accor-
dance with the systems and methodologies disclosed herein is
illustrated. For instance, the computing device 1100 may be
used in a system that executes path-constrained random walks
for query expansion and/or query document matching. By
way of another example, the computing device 1100 may be
used in a system that constructs labeled and directed graph
based upon clickthrough data from search logs. The comput-
ing device 1100 includes at least one processor 1102 that
executes instructions that are stored in a memory 1104. The
instructions may be, for instance, instructions for implement-
ing functionality described as being carried out by one or
more components discussed above or instructions for imple-
menting one or more of the methods described above. The
processor 1102 may access the memory 1104 by way of a
system bus 1106. In addition to storing executable instruc-
tions, the memory 1104 may also store a labeled and directed
graph, scores for relationships, ranked lists, clickthrough
data, and so forth.

The computing device 1100 additionally includes a data
store 1108 that is accessible by the processor 1102 by way of
the system bus 1106. The data store 1108 may include execut-
able instructions, a labeled and directed graph, scores for
relationships, ranked lists, clickthrough data, etc. The com-
puting device 1100 also includes an input interface 1110 that
allows external devices to communicate with the computing
device 1100. For instance, the input interface 1110 may be
used to receive instructions from an external computer
device, from a user, etc. The computing device 1100 also
includes an output interface 1112 that interfaces the comput-
ing device 1100 with one or more external devices. For
example, the computing device 1100 may display text,
images, etc. by way of the output interface 1112.
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It is contemplated that the external devices that communi-
cate with the computing device 1100 via the input interface
1110 and the output interface 1112 can be included in an
environment that provides substantially any type of user inter-
face with which a user can interact. Examples of user inter-
face types include graphical user interfaces, natural user
interfaces, and so forth. For instance, a graphical user inter-
face may accept input from a user employing input device(s)
such as a keyboard, mouse, remote control, or the like and
provide output on an output device such as a display. Further,
a natural user interface may enable a user to interact with the
computing device 1100 in a manner free from constraints
imposed by input device such as keyboards, mice, remote
controls, and the like. Rather, a natural user interface can rely
on speech recognition, touch and stylus recognition, gesture
recognition both on screen and adjacent to the screen, air
gestures, head and eye tracking, voice and speech, vision,
touch, gestures, machine intelligence, and so forth.

Additionally, while illustrated as a single system, it is to be
understood that the computing device 1100 may be a distrib-
uted system. Thus, for instance, several devices may be in
communication by way of a network connection and may
collectively perform tasks described as being performed by
the computing device 1100.

As used herein, the terms “component” and “system” are
intended to encompass computer-readable data storage thatis
configured with computer-executable instructions that cause
certain functionality to be performed when executed by a
processor. The computer-executable instructions may include
aroutine, a function, or the like. It is also to be understood that
acomponent or system may be localized on a single device or
distributed across several devices.

Further, as used herein, the term “exemplary” is intended to
mean “serving as an illustration or example of something.”

Various functions described herein can be implemented in
hardware, software, or any combination thereof. If imple-
mented in software, the functions can be stored on or trans-
mitted over as one or more instructions or code on a com-
puter-readable medium. Computer-readable media includes
computer-readable storage media. A computer-readable stor-
age media can be any available storage media that can be
accessed by a computer. By way of example, and not limita-
tion, such computer-readable storage media can comprise
RAM, ROM, EEPROM, CD-ROM or other optical disk stor-
age, magnetic disk storage or other magnetic storage devices,
or any other medium that can be used to carry or store desired
program code in the form of instructions or data structures
and that can be accessed by a computer. Disk and disc, as used
herein, include compact disc (CD), laser disc, optical disc,
digital versatile disc (DVD), floppy disk, and blu-ray disc
(BD), where disks usually reproduce data magnetically and
discs usually reproduce data optically with lasers. Further, a
propagated signal is not included within the scope of com-
puter-readable storage media. Computer-readable media also
includes communication media including any medium that
facilitates transfer of a computer program from one place to
another. A connection, for instance, can be a communication
medium. For example, if the software is transmitted from a
website, server, or other remote source using a coaxial cable,
fiber optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and microwave,
then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio and microwave
are included in the definition of communication medium.
Combinations of the above should also be included within the
scope of computer-readable media.
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Alternatively, or in addition, the functionality described
herein can be performed, at least in part, by one or more
hardware logic components. For example, and without limi-
tation, illustrative types of hardware logic components that
can be used include Field-programmable Gate Arrays (FP-
GAs), Program-specific Integrated Circuits (ASICs), Pro-
gram-specific Standard Products (ASSPs), System-on-a-chip
systems (SOCs), Complex Programmable Logic Devices
(CPLDs), etc.

What has been described above includes examples of one
ormore embodiments. It is, of course, not possible to describe
every conceivable modification and alteration of the above
devices or methodologies for purposes of describing the
aforementioned aspects, but one of ordinary skill in the art can
recognize that many further modifications and permutations
of various aspects are possible. Accordingly, the described
aspects are intended to embrace all such alterations, modifi-
cations, and variations that fall within the spirit and scope of
the appended claims. Furthermore, to the extent that the term
“includes” is used in either the details description or the
claims, such term is intended to be inclusive in a manner
similar to the term “comprising” as “comprising” is inter-
preted when employed as a transitional word in a claim.

What is claimed is:

1. A method comprising the following computer-execut-
able acts:

receiving an input query;

executing path-constrained random walks over a com-

puter-implemented labeled and directed graph based

upon the input query, wherein the labeled and directed
graph comprises:

a first set of nodes that are representative of queries
comprised in clickthrough data from search logs;

a second set of nodes that are representative of docu-
ments comprised in the clickthrough data from the
search logs;

athird set of nodes that are representative of words from
the queries and the documents; and

edges between nodes that are representative of relation-
ships between the queries, the documents, and the
words;

wherein the path-constrained random walks comprise
traversals over edges of the graph between nodes, the
path-constrained random walks traverse the edges of
the graph between the nodes in accordance with pre-
defined path types, an each of the predefined path
types comprises a respective sequence of relations
between the nodes in the graph for traversing as part
of a corresponding path-constrained random walk
from the path-constrained random walks; and

computing a score for a relationship between a target node

and a source node representative of the input query
based at least in part upon the path-constrained random
walks.

2. The method of claim 1, wherein the third set of nodes
comprises the target node, and wherein the target node is
representative of a candidate query expansion term.

3. The method of claim 2, wherein the input query is
desirably input to a search engine, and wherein the method
further comprises:

selecting the candidate query expansion term based at least

in part upon the score for the relationship between the

target node representative of the candidate query expan-
sion term and the source node representative of the input
query; and

responsive to selecting the candidate query expansion

term, causing the search engine to execute a search over
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a plurality of documents based at least in part upon the
candidate query expansion term.

4. The method of claim 2, wherein the input query is
desirably input to a search engine, and wherein the method
further comprises:

selecting the candidate query expansion term based at least

in part upon the score for the relationship between the
target node representative of the candidate query expan-
sion term and the source node representative of the input
query; and

responsive to selecting the candidate query expansion

term, causing the search engine to display the candidate
query expansion term as a suggested query.

5. The method of claim 1, further comprising outputting a
ranked list of candidate query expansion terms based upon
respective scores for corresponding relationships between
target nodes representative of the candidate query expansion
terms and the source node representative of the input query.

6. The method of claim 1, wherein the second set of nodes
comprises the target node, and wherein the target node is
representative of a candidate document.

7. The method of claim 6, wherein the input query is
desirably input to a search engine, and wherein the method
further comprises:

returning the candidate document responsive to execution

of a search over a plurality of documents performed by
the search engine, wherein the candidate document is
returned by the search engine based at least in part upon
the score for the relationship between the target node
representative of the candidate document and the source
node representative of the input query.

8. The method of claim 1, wherein computing the score for
the relationship between the target node and the source node
representative of the input query further comprising:

determining respective values for the path-constrained ran-

dom walks between the target node and the source node
representative of the input query, wherein the path-con-
strained random walks traverse the edges of the graph
between the nodes from the source node representative
of the input query to the target node in accordance with
the predefined path types; and

combining the respective values for the path-constrained

random walks that traverse the edges of the graph
between the nodes from the source node representative
of the input query to the target node in accordance with
the predefined path types to compute the score for the
relationship between the target node and the source node
representative of the input query.

9. The method of claim 8, wherein weights are assigned to
the predefined path types, and wherein the respective values
for the path-constrained random walks that traverse the edges
of the graph between the nodes from the source node repre-
sentative of the input query to the target node in accordance
with the predefined path types are combined as a function of
the weights.

10. The method of claim 1, wherein the edges in the graph
are labeled by respective relations, and wherein the edges in
the graph are assigned respective edge scores based upon
relation-specific probabilistic models for the respective rela-
tions.

11. The method of claim 10, wherein an edge score
between a particular source node and a particular target node
is a probability of reaching the particular target node from the
particular source node with a one-step random walk, the
probability being based on a type of relation between the
particular target node and the particular source node.
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12. The method of claim 1, further comprising constructing
the labeled and directed graph based upon the clickthrough
data from the search logs.

13. A computing apparatus, comprising:

at least one processor; and

memory that comprises computer excutable instructions

that, when executed by the at least one processor, cause

the at least one processor to perform acts including:

executing path-constrained random walks over a labeled
and directed graph based upon an input query,
wherein the labeled and directed graph comprises:

a first set of nodes that represent queries comprised in
clickthrough data from search logs;

a second set of nodes that represent documents com-
prised in the clickthrough data from the search
logs;

a third set of nodes that represent words from the
queries and the documents; and

edges between nodes that represent relationships
between the queries, the documents, and the words;

wherein the path-constrained random walks traverse
edges of the graph between nodes in accordance
with predefined path types, and each of the pre-
defined path comprises a respective sequence of
relations between the nodes in the graph for travers-
ing as part of a corresponding path-constrained
random walk from the path-constrained random
walks; and

computing a score for a relationship between a target
node that represents a candidate query expansion term
and a source node that represents the input query
based at least in part upon the path-constrained ran-
dom walks.

14. The computing apparatus of claim 13, the memory
further comprising computer-executable instructions that,
when executed by the at least one processor, cause the at least
one processor to perform acts including:

outputting a ranked list of candidate query expansion terms

based upon respective scores for relationships between
target nodes that represent the candidate query expan-
sion terms and the source node that represents the input
query.

15. The computing apparatus of claim 13, wherein the
path-constrained random walks respectively instantiate the
predefined path types, and the memory further comprising
computer-executable instructions that, when executed by the
at least one processor, cause the at least one processor to
perform acts including:

determining respective values for the path-constrained ran-

dom walks that instantiate the path types; and
combining the respective values for the path-constrained
walks that instantiate the predefined path types to com-
pute the score for the relationship between the target
node that represents the candidate query expansion term
and the source node that represents the input query.

16. The computing apparatus of claim 13, wherein the
edges in the graph are labeled by respective relations, and
wherein the edges in the graph are assigned respective edge
scores based upon relation-specific probabilistic models for
the respective relations.

17. The computing apparatus of claim 16, wherein an edge
score between a particular source node and a particular target
node is a probability of reaching the particular target node
from the particular source node with a one-step random walk,
the probability being based on a type of relation between the
particular target node and the particular source node.
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18. A computer-readable storage medium including com- determining respective values for the path-constrained ran-
puter-executable instructions that, when executed by a pro- dom walks that traverse the edges of the graph between
cessor, cause the processor to perform acts including: the nodes in accordance with the differing predefined

receiving an input query; path types; and
executing path-constrained random walks over a com- 5 combining the respective values for the path-constrained
puter-implemented labeled and directed graph based random walks tha.t traverse the e?dges Of thf? graph
upon the input query, wherein the labeled and directed between the nodes in accordance with the differing pre-

defined path types to compute a score for a relationship

graph comprises: . .
between the target node representative of the candidate

a first set of nodes that are representative of queries

comprised in clickthrough data from search logs; 10 document and the source node representative of the
a second set of nodes that are representative of docu- put query. . .

ments comprised in the clickthrough data from the 19. The computer-readable storage medium of claim 18,

search logs: wherein each of the differing predefined path types comprises

a respective sequence of relations between the nodes in the
15 graph for traversing as part of a corresponding path-con-
strained random walk from the path-constrained random
walks.
20. The computer-readable storage medium of claim 18,
wherein the edges in the graph are labeled by respective
20 relations, and wherein the edges in the graph are assigned
respective edge scores based upon relation-specific probabi-
listic models for the respective relations.

athird set of nodes that are representative of words from
the queries and the documents; and

edges between nodes that are representative of relation-
ships between the queries, the documents, and the
words;

wherein the path-constrained random walks begin at a
source node representative of the input query, traverse
edges of the graph between nodes in accordance with
differing predefined path types, and end at a target
node representative of a candidate document; L



